AI精选付费资料包(37.4GB) - 4304网盘资源-网盘资源搜索神器

  • file:超500T汁源汇总.docx
  • file:防失联网址.txt
  • file:更多资源关注本公众号.png
  • file:人工智能大纲升级版本.pdf
  • file:OpenCV书籍.rar
  • file:53份人工智能行业报告.zip
  • file:论文集索引.jpg
  • file:8. 7-BERT模型训练策略.mp4
  • file:5. 4-预训练模型的作用.mp4
  • file:7. 6-向量特征编码方法.mp4
  • file:2. 1-论文讲解思路概述.mp4
  • file:4. 3-模型在NLP领域应用效果.mp4
  • file:1. 课程介绍.mp4
  • file:6. 5-输入数据特殊编码字符解析.mp4
  • file:1. 1-关键点位置特征构建.mp4
  • file:5. 4-基于图卷积构建人体拓扑关系.mp4
  • file:13-额外补充-Resnet论文解读.mp4
  • file:1504.08083_Fast R-CNN.pdf
  • file:1412.2306v2_Deep Visual-Semantic Alignments for Generating Image Descriptions.pdf
  • file:1406.2661v1_Generative Adversarial Nets.pdf
  • file:1311.2524v5_R_CNN.pdf
  • file:4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
  • file:1409.1556v6_VERY DEEP CONVOLUTIONAL Networks.pdf
  • file:1512.03385v1_Deep Residual Learning for Image Recognition.pdf
  • file:1311.2901v3_Visualizing and Understanding Convolutional Networks.pdf
  • file:Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
  • file:1506.02025_Spatial Transformer Networks.pdf
  • file:Deep-Learning-with-PyTorch-Tutorials.zip
  • file:4. 课时4 循环神经网络中Layer使用-1.mp4
  • file:10. 课时10 RNN训练难题—梯度弥散与梯度爆炸.mp4
  • file:8. 课时8 LSTM基本原理-2.mp4
  • file:6. 课时6 项目实战-时间序列预测问题.mp4
  • file:3-卷积运算详解-3.mp4
  • file:9-池化与采样操作讲解.mp4
  • file:23-ResNet实战-4.mp4
  • file:19-ResNet, DenseNet详解.mp4
  • file:17-BatchNorm-2.mp4
  • file:11-CIFAR100与VGG13实战-2.mp4
  • file:8 WGAN-GP原理.flv
  • file:10 GAN实战-2.flv
  • file:7 EM距离.flv
  • file:4 纳什均衡-1.flv
  • file:3 生成对抗网络.flv
  • file:2 画家的成长历程.flv
  • file:第四章:练手小项目-人体姿态识别demo.zip
  • file:第三章:基于MASK-RCNN框架训练自己的数据与任务.zip
  • file:第二章:MaskRcnn网络框架源码详解.zip
  • file:第五章:迁移学习.zip
  • file:第十五章:项目实战-答题卡识别判卷.zip
  • file:第二十章:人脸关键点定位.zip
  • file:第十八章:Opencv的DNN模块.zip
  • file:第八章notebook课件.zip
  • file:6-缺陷检测模型培训.mp4
  • file:5-项目参数配置.mp4
  • file:3-标签转格式脚本制作.mp4
  • file:2-数据与标签配置方法.mp4
  • file:1.任务需求与项目概述.mp4
  • file:7-输出结果与项目总结.mp4
  • file:unet++.zip
  • file:深度学习分割任务.pdf
  • file:2.mp4
  • file:YOLO.pdf
  • file:NEU-DET.zip
  • file:PyTorch-YOLOv3.zip
  • file:Python机器学习实训营.docx
  • file:7参数更新方法.mp4
  • file:6-梯度下降通俗解释.mp4
  • file:1-回归问题概述.mp4
  • file:3-独立同分布的意义.mp4
  • file:4-坐标棋盘制作.mp4
  • file:6-多分类-softmax.mp4
  • file:5-分类决策边界展示分析.mp4
  • file:3-可视化展示.mp4
  • file:2-概率结果随特征数值的变化.mp4
  • file:2-KMEANS工作流程.mp4
  • file:4-DBSCAN聚类算法.mp4
  • file:5-信息增益率与gini系数.mp4
  • file:10-EM算法.pdf
  • file:3-决策树与集成算法.pdf
  • file:12-word2vec.pdf
  • file:6-支持向量机.pdf
  • file:1-AI入学指南.pdf
  • file:8-xgboost.pdf
  • file:时间序列分析.pdf
  • file:机器学习实践指南++案例应用解析+麦好.pdf
  • file:机器学习导论 原书 第2版.pdf
  • file:机器学习在量化投资中的应用研究_汤凌冰著_北京:电子工业出版社_2014.11_13662591_P157.pdf
  • file:图解机器学习.pdf
  • file:《TensorFlow 2.0深度学习算法实战教材》-中文版教材分享.pdf
  • file:Tensorflow技术解析与实战.pdf
  • file:深度学习技术图像处理入门 by 杨培文,胡博强 (z-lib.org).pdf
  • file:《神经网络与深度学习》(邱锡鹏-20191121).pdf
  • file:超详细的计算机视觉书籍.zip
  • file:源代码和PPT在Github下载.txt
  • file:iccv15_tutorial_training_rbg.pdf
  • file:FasterRcnn.zip
  • file:Faster R-CNN Towards Real-Time Object Detection with Region Proposal Networks.pdf
  • file:7-得到线性回归方程.mp4
  • file:QQ截图20190624141231.png
  • file:1.png
  • file:模型评估方法.ipynb
  • file:聚类算法-实验.zip
  • file:决策树-代码实现.zip
  • file:《跟着迪哥学 Python数据分析与机器学习实战》PDF+唐宇迪.pdf
  • file:Python基础教程(第3版)高清英文版.pdf
  • file:深度学习之PyTorch物体检测实战.epub
  • file:d2l-zh-pytorch.pdf
  • file:Dive-into-DL-Pytorch.pdf
  • file:Covariant Compositional Networks For Learning Graphs.pdf
  • file:Neural networks for relational learning- an experimental comparison.pdf
  • file:Hierarchical Graph Representation Learning with Differentiable Pooling.pdf
  • file:Graphical-Based Learning Environments for Pattern Recognition.pdf
  • file:Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction.pdf
  • file:Learning Steady-States of Iterative Algorithms over Graphs.pdf
  • file:Graph Capsule Convolutional Neural Networks.pdf
  • file:Mean-field theory of graph neural networks in graph partitioning.pdf
  • file:Graph Neural Networks for Ranking Web Pages.pdf
  • file:How Powerful are Graph Neural Networks-.pdf
  • file:Graph Partition Neural Networks for Semi-Supervised Classification.pdf
  • file:Contextual Graph Markov Model- A Deep and Generative Approach to Graph Processing.pdf
  • file:Deep Sets.pdf
  • file:Geometric deep learning on graphs and manifolds using mixture model cnns.pdf
  • file:Deriving Neural Architectures from Sequence and Graph Kernels.pdf
  • file:A new model for learning in graph domains.pdf
  • file:A Comparison between Recursive Neural Networks and Graph Neural Networks.pdf
  • file:CelebrityNet- A Social Network Constructed from Large-Scale Online Celebrity Images.pdf
  • file:Graph Convolution over Pruned Dependency Trees Improves Relation Extraction.pdf
  • file:Recurrent Relational Networks.pdf
  • file:Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks..pdf
  • file:Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.pdf
  • file:Graph Convolutional Encoders for Syntax-aware Neural Machine Translation.pdf
  • file:Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks.pdf
  • file:Jointly Multiple Events Extraction via Attention-based Graph.pdf
  • file:A Graph-to-Sequence Model for AMR-to-Text Generation.pdf
  • file:Graph Convolutional Networks with Argument-Aware Pooling for Event Detection.pdf
  • file:N-ary relation extraction using graph state LSTM.pdf
  • file:End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures.pdf
  • file:Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search(1).pdf
  • file:MolGAN- An implicit generative model for small molecular graphs(1).pdf
  • file:Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.pdf
  • file:NetGAN- Generating Graphs via Random Walks(1).pdf
  • file:Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering.pdf
  • file:Representation learning for visual-relational knowledge graphs.pdf
  • file:The More You Know- Using Knowledge Graphs for Image Classification.pdf
  • file:Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks.pdf
  • file:Knowledge Transfer for Out-of-Knowledge-Base Entities - A Graph Neural Network Approach.pdf
  • file:Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs.pdf
  • file:Dynamic Graph Generation Network- Generating Relational Knowledge from Diagrams.pdf
  • file:Multi-Label Zero-Shot Learning with Structured Knowledge Graphs.pdf
  • file:Deep Reasoning with Knowledge Graph for Social Relationship Understanding.pdf
  • file:Translating Embeddings for Modeling Multi-relational Data.pdf
  • file:Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders.pdf
  • file:Conversation Modeling on Reddit using a Graph-Structured LSTM.pdf
  • file:Learning to Represent Programs with Graphs.pdf
  • file:A simple neural network module for relational reasoning.pdf
  • file:Discovering objects and their relations from entangled scene representations.pdf
  • file:Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.pdf
  • file:Attention, Learn to Solve Routing Problems!.pdf
  • file:Graph networks as learnable physics engines for inference and control.pdf
  • file:Learning Deep Generative Models of Graphs.pdf
  • file:Metacontrol for Adaptive Imagination-Based Optimization.pdf
  • file:Inference in Probabilistic Graphical Models by Graph Neural Networks.pdf
  • file:GraphRNN- Generating Realistic Graphs with Deep Auto-regressive Models.pdf
  • file:VAIN- Attentional Multi-agent Predictive Modeling.pdf
  • file:Self-Attention with Relative Position Representations.pdf
  • file:NerveNet Learning Structured Policy with Graph Neural Networks.pdf
  • file:Symbolic Graph Reasoning Meets Convolutions.pdf
  • file:Learning Multiagent Communication with Backpropagation.pdf
  • file:A Compositional Object-Based Approach to Learning Physical Dynamics.pdf
  • file:Graph Convolutional Neural Networks for Web-Scale Recommender Systems.pdf
  • file:Visual Interaction Networks- Learning a Physics Simulator from Vide.o.pdf
  • file:Semi-supervised User Geolocation via Graph Convolutional Networks.pdf
  • file:Graph Convolutional Matrix Completion.pdf
  • file:Learning a SAT Solver from Single-Bit Supervision.pdf
  • file:Situation Recognition with Graph Neural Networks.pdf
  • file:Traffic Graph Convolutional Recurrent Neural Network- A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting.pdf
  • file:Interaction Networks for Learning about Objects, Relations and Physics.pdf
  • file:Effective Approaches to Attention-based Neural Machine Translation.pdf
  • file:Learning Conditioned Graph Structures for Interpretable Visual Question Answering.pdf
  • file:Graph Neural Networks:A Review of Methods and Applications.pdf
  • file:Relational Inductive Biases, Deep Learning, and Graph Networks.pdf
  • file:The Graph Neural Network Model.pdf
  • file:Deep Learning on Graphs- A Survey.pdf
  • file:Geometric Deep Learning- Going beyond Euclidean data.pdf
  • file:Neural Message Passing for Quantum Chemistry.pdf
  • file:cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
  • file:cudnn-10.0-linux-x64-v7.5.0.56.tgz
  • file:Anaconda3-2019.03-Linux-x86_64.sh
  • file:cuda_10.0.130_411.31_win10.exe
  • file:pycharm-community-2019.1.1.exe
  • file:8-基于视频的车位检测.mp4
  • file:6-车位区域划分.mp4
  • file:5-模板匹配得出识别结果.mp4
  • file:2-环境配置与预处理.mp4
  • file:5-tesseract-ocr安装配置.mp4
  • file:3-原始与变换坐标计算.mp4
  • file:2-文档轮廓提取.mp4
  • file:1-COCO数据集与人体姿态识别简介.mp4
  • file:三代算法-3-faster-rcnn概述.mp4
  • file:三代算法-2-深度学习经典检测方法.mp4
  • file:论文解读-4-网络细节.mp4
  • file:1-Labelme工具安装.mp4
  • file:5-基于标注数据训练所需任务.mp4
  • file:3-完成训练数据准备工作.mp4
  • file:4-maskrcnn源码修改方法.mp4
  • file:2-使用labelme进行数据与标签标注.mp4
  • file:5-RPN层的作用与实现解读.mp4
  • file:8-DetectionTarget层的作用.mp4
  • file:4-基于不同尺度特征图生成所有框.mp4
  • file:10-RoiPooling层的作用与目的.mp4
  • file:11-RorAlign操作的效果.mp4
  • file:7-Proposal层实现方法.mp4
  • file:9-正负样本选择与标签定义.mp4
  • file:3-树模型预剪枝参数作用.mp4
  • file:8-整体流程debug解读.mp4
  • file:7-测试算法效果.mp4
  • file:12-非线性决策边界.mp4
  • file:1-多分类逻辑回归整体思路.mp4
  • file:9-训练多分类模型.mp4
  • file:Kmeans算法模块概述.mp4
  • file:2-计算得到簇中心点.mp4
  • file:7-阈值对结果的影响.mp4
  • file:4-交叉验证实验分析.mp4
  • file:10-模型复杂度.mp4
  • file:7-MiniBatch方法.mp4
  • file:5-评估指标-Inertia.mp4
  • file:5-评估指标-Inertia_20190805_232027.mp4
  • file:6-如何找到合适的K值.mp4
  • file:11-DBSCAN算法_20190805_232033.mp4
  • file:9-应用实例-图像分割.mp4
  • file:mnist-original.mat
  • file:GitHub地址.txt
  • file:Stochastic Training of Graph Convolutional Networks with Variance Reduction.pdf
  • file:Adaptive Sampling Towards Fast Graph Representation Learning.pdf
  • file:Inductive Representation Learning on Large Graphs.pdf
  • file:Bayesian Semi-supervised Learning with Graph Gaussian Processes.pdf
  • file:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.pdf
  • file:Spectral Networks and Deep Locally Connected.pdf
  • file:Deep Convolutional Networks on Graph-Structured Data.pdf
  • file:Graph Classification using Structural Attention.pdf
  • file:Attention Is All You Need.pdf
  • file:Gated Graph Sequence Neural Networks.pdf
  • file:Sentence-State LSTM for Text Representation.pdf
  • file:Modeling relational data with graph convolutional networks.pdf
  • file:Graph-to-Sequence Learning using Gated Graph Neural Networks.pdf
  • file:Rethinking Knowledge Graph Propagation for Zero-Shot Learning.pdf
  • file:Out of the Box- Reasoning with Graph Convolution Nets for Factual Visual Question Answering(1).pdf
  • file:Graph-Structured Representations for Visual Question Answering.pdf
  • file:Learning Region features for Object Detection.pdf
  • file:Structural-RNN- Deep Learning on Spatio-Temporal Graphs.pdf
  • file:PointNet- Deep Learning on Point Sets for 3D Classification and Segmentation.pdf
  • file:Dynamic Graph CNN for Learning on Point Clouds.pdf
  • file:Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs.pdf
  • folder:AI精选付费资料包(37.4GB)
  • folder:三:超详细人工智能学习大纲
  • folder:四:机器学习基础算法教程
  • folder:二:AI必读经典书籍
  • folder:一:人工智能论文合集
  • folder:五:深度学习神经网络基础教程
  • folder:六:计算机视觉实战项目
  • folder:01.机器学习经典算法精讲视频课程
  • folder:图神经网络(GNN)100篇论文集
  • folder:深度学习论文精讲-BERT模型
  • folder:CVPR行人重识别论文解读
  • folder:ICCV2021
  • folder:Resnet论文解读
  • folder:CNN_不能错过的10篇论文
  • folder:神经网络模型基础课件资料
  • folder:GAN对抗生成网络基础
  • folder:01.OpenCV图像处理实战视频课程
  • folder:03.MASK-RCNN目标检测实战视频课程
  • folder:02.YOLOV5目标检测视频课程
  • folder:08.Unet图像分割课程资料
  • folder:第十三章:决策树实验分析
  • folder:第二章:线性回归代码实现
  • folder:第三章:模型评估方法
  • folder:课程简介
  • folder:第八章:聚类算法-Kmeans&Dbscan原理
  • folder:部分代码资料
  • folder:02.机器学习相关书籍
  • folder:01.Python基础书籍
  • folder:Models
  • folder:Applications
  • folder:Survey
  • folder:解压密码: iccv2021
  • folder:CNN+RNN+GAN
  • folder:项目实战四:停车场车位识别
  • folder:项目实战五:答题卡识别判卷
  • folder:项目实战三:全景图像拼接
  • folder:第六章:必备基础-物体检测FasterRcnn系列
  • folder:第一章:物体检测框架-MaskRcnn项目介绍与配置
  • folder:9-聚类算法实验分析
  • folder:10-决策树原理
  • folder:1-线性回归原理推导
  • folder:8-Kmeans代码实现
  • folder:吴恩达《Machine Learning Yearning》完整中文版
  • folder:《Python基础教程(第3版)》
  • folder:21年最新-李沐《动手学深度学习第二版》中、英文版免费分享
  • folder:training methods
  • folder:propagation_type
  • folder:combinatorial optimization
  • folder:graph generation
  • folder:knowledge graph
  • folder:science
  • folder:课程安装软件-Ubuntu 18.04
  • folder:7-识别模型构建
  • folder:3-图像数据预处理
  • folder:4-车位直线检测
  • folder:5-按列划分区域
  • folder:1-任务整体流程
  • folder:2-预处理操作
  • folder:4-选项判断识别
  • folder:1-总体流程与方法讲解
  • folder:2-RANSAC算法
  • folder:6-文档扫描识别效果
  • folder:4-透视变换结果
  • folder:2-文档轮廓提取
  • folder:2-网络架构概述
  • folder:7-论文解读-4-网络细节
  • folder:1-三代算法-1-物体检测概述
  • folder:6-测试与展示模块
  • folder:6-候选框过滤方法
  • folder:3-生成框比例设置
  • folder:1-FPN层特征提取原理解读
  • folder:12-整体框架回顾
  • folder:第五章:必备基础-迁移学习与Resnet网络架构
  • folder:1-Mask-Rcnn开源项目简介
  • folder:2-开源项目数据集
  • folder:4-回归树模型
  • folder:1-树模型可视化展示
  • folder:2-决策边界展示分析
  • folder:5-数据与标签定义
  • folder:6-梯度计算
  • folder:5-迭代优化参数
  • folder:8-鸢尾花数据集多分类任务
  • folder:2-训练模块功能
  • folder:4-算法迭代更新
  • folder:3-样本点归属划分
  • folder:1-Sklearn工具包简介
  • folder:8-ROC曲线
  • folder:3-交叉验证的作用
  • folder:6-评估指标对比分析
  • folder:6-随机梯度下降得到的效果
  • folder:13-岭回归与lasso
  • folder:5-学习率对结果的影响
  • folder:9-多项式回归
  • folder:14-实验总结
  • folder:8-不同策略效果对比
  • folder:2-参数直接求解方法
  • folder:1-Kmenas算法常用操作
  • folder:3-建模流程解读
  • folder:吴恩达MLY
  • folder:receptive field control
  • folder:boosting
  • folder:neighborhood sampling
  • folder:edge-informative graph
  • folder:Visual Question Answering
  • folder:Object Detection
  • folder:Image classification
  • folder:Semantic Segmentation
  • folder:1-迁移学习的目标
  • folder:7-加载训练好的权重
  • folder:6-shortcut模块
  • folder:Detection-PyTorch-Notebook
分享时间 2024-02-16
入库时间 2024-10-06
状态检测 有效
资源类型 QUARK
分享用户 扬帆*航
资源有问题?点此举报
链接

相似推荐

  • AI精选付费资料包(37.4GB)
  • Ai智能绘画一键画出你的女神!Stable Diffusion保姆式教程!
  • 高中全科精选资料包
  • 高中全科精选资料包
  • 最新付费PPT模板大全(几万套)
  • PPT动画制作教程
  • ppt动画
  • PPT创意动画硬核训练营
  • Ai内容写作
  • 2024-09-15-Ai内容写作

用户其它资源

  • 妖兽都市 1992
  • 珍版海外回归中医善本古籍丛书系列
  • 【典藏版书库】_500册
  • 微笑杀神
  • 《风雪谷》2024惊悚片
  • 狂暴巨蜥
  • 买U盘自带一批车载音乐分享(40G)
  • 科学家讲的亲子科学课
  • 贝乐虎早教儿歌视频合集
  • 2023年2024年教招课程资料合集

最新资源

  • 衰仔斗邪神
  • 衰仔斗邪神
  • 蓝色小程序网站开发公司网站模板.zip
  • 带多级筛选功能-(自适应手机端)响应式出国留学咨询教育培训机构类pbootcms网站模板下载.zip
  • (自适应移动端)中英文双语网络摄像头pbootcms网站模板 电子摄像头设备网站源码下载.zip
  • (自适应移动端)棕色家具装修pbootcms网站模板 响应式家具建材类网站源码下载.zip
  • (自适应移动端)游泳馆泳池设备pbootcms网站模板 泳池水处理器网站源码下载.zip
  • (自适应移动端)响应式外国语学校网站源码 HTML5响应式大学学校院校类网站pbootcms模板.zip
  • (自适应移动端)响应式门窗定制pbootcms模板 门窗门业网站模板下载-带视频功能.zip
  • (自适应移动端)响应式教育培训集团网站pbootcms模板 大气的教育培训机构网站源码下载.zip